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aDip. di Fisica, Università della Calabria and INFN, Gruppo collegato di Cosenza,

I-87036 Arcavacata di Rende, Cosenza, Italy
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ical simulations in non-compact (2+1)-dimensional quantum electrodynamics with massive

fermions at finite temperature. The existence of two phases, one with and the other with-

out confinement of fractional charges, is related to the realization of the Z symmetry. The

order parameter of this transition can be clearly identified. We show that it is possible to

detect the critical temperature for a given value of the fermion mass, by exploiting suitable

lattice operators as probes of the Z symmetry. Moreover, the large-distance behavior of the

correlation of these operators permits to distinguish the phase with Coulomb-confinement

from the Debye-screened phase. The resulting scenario is compatible with the existence of

a Berezinsky-Kosterlitz-Thouless transition. Some investigations are presented on the pos-

sible relation between chiral and deconfinement transitions and on the role of “monopoles”.
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1. Introduction

Non-compact quantum electrodynamics in (2+1)-dimensions (QED3) with fermionic mat-

ter is a special theory since it plays a role in contexts ranging from condensed matter

to particle physics. In particular, this theory is relevant for the characterization of the

phase diagram of high-Tc superconductors in the temperature-doping plane (see, for in-

stance, ref. [1] and references therein). Moreover, it is an interesting theoretical laboratory

for the investigation of mechanisms of confinement and for the study of the confinement-

deconfinement transition at finite temperature.

This paper aims at contributing to clarify some issues related with the latter topic.

Understanding the mechanism of confinement, identifying the nature of the confinement-

deconfinement transition and the related order parameter is of central interest in finite-

temperature non-Abelian quantum field theories, such as Quantum Chromodynamics

(QCD). Here definite answers are available in the limiting cases of infinite quark masses (i.e.

in the pure gauge theory) and zero quark masses (i.e. in the chiral limit). Instead, many

open questions remain for the general case of fermions with finite non-zero mass. In non-

compact QED3 the symmetry whose breaking determines the transition is the Z symmetry,

independently from the fermionic mass, the order parameter being the Polyakov loop with
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fractional charge. Evaluating the vacuum expectation value of the order parameter and its

2-point correlator allows to get, at least in principle, a complete description of the phase

diagram of the theory for varying fermion masses, coupling constant and temperature.

The only theoretical scenario suggested so far for the phase diagram of non-compact

QED3 at finite temperature is presented in refs. [2, 3], where it is found that the effective ac-

tion for the temporal component of the gauge field, A0(x), in the limit of large fermion mass

becomes equivalent to the sine-Gordon potential. This led the authors of ref. [2] to conclude

that there is a phase transition of Berezinsky-Kosterlitz-Thouless (BKT) type [4, 5]. More

precisely, there is a critical temperature Tc, depending on the fermion mass, above which

the system is in a deconfined or Debye phase, while below Tc the interaction is logarithmic

with the distance, i.e. it is Coulomb-like. In this paper we intend to verify the above sce-

nario for non-compact QED3 at finite temperature, by Monte Carlo numerical simulations,

using as probes the Polyakov loop with fractional charge and its 2-point correlator.

Another topic we consider in this paper is the behavior of the chiral condensate across

the deconfinement transition. In particular, if the chiral condensate exhibits a sharp drop

when the temperature is increased through the critical value, then we can conclude that

the dynamical mechanism responsible for deconfinement affects also the chiral symmetry

of the theory.

Finally, we present a few numerical results concerning the magnetic monopole density.

While monopoles in compact QED3 are undoubtedly related to confinement in the pure

gauge case [6] and the same is argued also in presence of fermions [7 – 9], in the non-

compact theory there is no a priori reason for which they could play any role. However,

following ref. [10], a monopole density can be defined on the lattice in the non-compact

theory exactly as in the compact one and its behavior with temperature can be studied. In

(3+1)-dimensional non-compact QED, it turns out that there exist a percolation threshold

for monopole current networks near the chiral transition [10], thus suggesting a possible

relation between monopole condensation and chiral symmetry breaking (see ref. [11] for a

criticism to this approach). In this paper we present some determinations for the monopole

density across the deconfinement transition and briefly discuss the possibility of a relation

between monopoles and confinement in non-compact QED3.

The paper is organized as follows: in section 2 we briefly recall the theory in the

continuum formulation, the origin of the Z symmetry and the conjectured phase diagram;

in section 3 we describe the lattice version of the theory and the operators we use as probes

of the phase transition; in section 4 we present the numerical results and discuss their

interpretation; in section 5 we draw our conclusions and sketch the future perspectives.

2. The continuum QED3 theory

The continuum Lagrangian density describing QED3 is given in Minkowski metric by

L = −
1

4
F 2

µν + ψiiDµγ
µψi −m0ψiψi , (2.1)

where Fµν = ∂µAν −∂νAµ is the field strength, Dµ = ∂µ − igAµ is the covariant derivative,

g is the coupling constant (or the electric charge) and the fermion fields ψi (i = 1, . . . , Nf )
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are 4-component spinors, defined in such a way that the theory is parity-invariant.1 The

relevant information concerning parity and chiral symmetry of this model can be found,

for instance, in ref. [9], section II.

2.1 The Z symmetry

In this section we briefly recall the origin of the Z symmetry which plays a fundamental

role in this paper.

The Euclidean partition function of finite temperature QED is invariant under gauge

transformations [2, 3]. For the field Aµ(τ, ~x) the gauge transformation

A′
µ(τ, ~x) = Aµ(τ, ~x) + ∂µχ(τ, ~x) , (2.2)

together with the periodic boundary conditions in the time direction

Aµ(1/T, ~x) = Aµ(0, ~x) , (2.3)

where T is the temperature, implies the following condition:

∂µχ(1/T, ~x) = ∂µχ(0, ~x) . (2.4)

Alike, for the fermion field ψ(τ, ~x), the gauge transformation

ψ′(τ, ~x) = eigχ(τ,~x)ψ(τ, ~x) , (2.5)

together with antiperiodic boundary conditions in the time direction

ψ(1/T, ~x) = −ψ(0, ~x) , (2.6)

implies

χ(1/T, ~x) = χ(0, ~x) +
2π

g
n , (2.7)

where n is an integer. Differently, we can say that χ(x) is periodic in the time direction

with period 1/T up to an integer multiple of 2π/g. In the language of group theory, we can

say that if G is the group of all gauge transformations and H is the subgroup of those gauge

transformations which are strictly periodic, then the quotient group G/H is isomorphic to

Z, the additive group of integers. We refer to this when we say that the theory possesses Z

symmetry. Note that this is a symmetry of the partition function in presence of dynamical

electrons.

In order to study the realization of the Z symmetry, a version of the Polyakov loop

operator is introduced, whose average is related to the free energy of an external charge g̃:

Πg̃(~x) = eig̃
R 1/T
0 dx0A0(x0,~x) . (2.8)

Under the action of an element of G/H, the Polyakov loop operator with charge g̃ trans-

forms as (here we use eqs. (2.2) and (2.7))

Π′
g̃(~x) = eig̃

R 1/T
0

dτA′

0(τ,~x) = eig̃
R 1/T
0

dτA0(τ,~x)e
i2πng̃

g = Πg̃(~x)e
i2πng̃

g . (2.9)

1This implies that the fermion is massive, while the photon is massless.
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Therefore, in order that the operator defined in eq. (2.8) be an order parameter, the charge

g̃ must not be an integer multiple of the basic charge g. One possibility is to follow ref. [12]

and study charges that are rational fractions of the fundamental charge, i.e. g̃ = g/m, with

integer m. As a consequence, eq. (2.9) becomes

Π′
m(~x) = Πm(~x)e

i2πn
m . (2.10)

The realization of the Z symmetry tests the ability of the electrodynamic system to

screen charges which are not integral multiples of the electron charge. Therefore, it is

related to (fractional) charge screening and confinement in QED in the same way as the

ZN symmetry does in finite temperature SU(N) pure gauge theory.

In conclusion, the operator Πg̃(~x) can be used as an order parameter for confinement

in Abelian gauge theories even in presence of dynamical charged particles: if the symmetry

is unbroken, the loop operator averages to zero and the system is in the confining phase,

otherwise it is in a non-confining phase.

2.2 Theoretical expectation for the phase diagram

In this Subsection, we briefly recall the ideas put forward in ref. [2] about the phase

structure of the theory under consideration.

The authors of ref. [2] propose the Polyakov loop with fractional charge as order pa-

rameter and argue that in parity-invariant electrodynamics with fermions of mass M there

is a deconfinement transition at finite temperature of BKT type.

The analysis of ref. [2] is based on computing the effective action V (M,gA0/T ) for

A0(τ, ~x), which explicitly exhibits the global Z symmetry. By studying this effective action

they characterize the type of the phase transition.

At finite temperature, non-compact QED3 contains three parameters (with the dimen-

sion of mass): the fermion mass M , the gauge coupling g2 and the temperature T ; the

dimensionless parameter which governs the loop expansion is the smaller between g2/M

and g2/T .

In the large M limit, so that T/M and g2/M are small with g2/T finite, they argue

that the critical behavior of the theory is identical to that of the 2-dimensional sine-Gordon

potential, which undergoes a BKT phase transition. Therefore they conclude that also in

QED3 at finite temperature there must be a BKT transition with a critical line in the

[M/T, g2/T ] plane, starting at

(M/T, g2/T ) = (∞, 8π) , (2.11)

from which they obtain

TM≫T
crit. =

g2

8π
. (2.12)

They determine also the critical temperature for the BKT transition up to one-loop order:

TM≫T
crit. =

g2

8π(1 + g2

12πM
)
. (2.13)
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The second limit considered in ref. [2] is the high-temperature limit, T ≫M,g2. The

analysis of ref. [2] shows that the Z symmetry is spontaneously broken, which means the

system is in the deconfined phase.

In a subsequent paper [3] the same authors characterize better the nature of the two

phases divided by the BKT critical line. They find that, where the Z symmetry is unbroken,

the system is in a confining phase, more precisely in a “Coulomb phase”, where electric

charges mutually interact by a logarithmic Coulomb potential. This logarithmic behavior

has as a consequence a power law dependence of the Polyakov loop correlators. Indeed, if

the interaction potential is of the form V (r) = α log r, then one can write immediately

G(r) = 〈Π(0)Π∗(r)〉 = e−
V (r)

T = e−
α
T

log r = r−
α
T = r−η(T ) . (2.14)

At the tree level, they find

G(r)tree ∝ r−
g̃2

4πT . (2.15)

From eqs. (2.14) and (2.15) the value of η can be easily found:

η =
g̃2

4πT
. (2.16)

Above Tc the electric charge is not confined and the system is in a Debye plasma phase.

The expected large distance behavior for the connected Polyakov loop correlators in this

case is given by

Gconn(r) ∝ e−MDr . (2.17)

The Debye mass MD makes the Coulomb interaction short-ranged and fermions and an-

tifermions are approximately free particles.

3. The lattice QED3 theory

In this paper we discretize the Euclidean action on a lattice with N2
σ ×Nτ sites and lattice

spacing a by staggered fermions χ, χ, according to

S = SG +
N
∑

i=1

∑

n,m

χi(n)Mn,mχi(m) , (3.1)

where SG is the gauge field action and the fermion matrix is given by

Mn,m[U ] =
∑

ν=1,2,3

ην(n)

2

{

[Uν(n)]δm,n+ν̂ − [U †
ν (m)]δm,n−ν̂

}

, (3.2)

with ην(n) = (−1)
P

ρ<ν nρ and Uµ(n) = eiαµ(n) is the link variable; the phase α is related

to the gauge field by αµ(n) = agAµ(n).

In a non-compact formulation of QED3, SG is given by

SG[α] =
β

2

∑

n,µ<ν

Fµν(n)Fµν(n) , (3.3)
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where

Fµν(n) = {αν(n+ µ̂) − αν(n)} − {αµ(n+ ν̂) − αµ(n)} (3.4)

and αµ(n) is the phase of the link variable and β = 1/(g2a).

With this action we simulate N = 1 flavors of staggered fermions corresponding to

Nf = 2 flavors of parity-invariant four-component fermions.

3.1 Order parameters and other lattice operators

The lattice version of the operator (2.8) is [12]

Πm(~x) =

Nτ
∏

τ=1

e
i
m

θ(
→

x ,τ) , (3.5)

where θ = gA0 and ~x lives on the N2
σ spatial lattice, from which we can determine the

operator averaged on the lattice configuration,

Πm =
1

N2
σ

∑

~x

Πm(~x) . (3.6)

As noted in ref. [12], the original Z symmetry is translated into a Zm symmetry on the

lattice operator Πm; in the broken phase, the operator Πm will fluctuate around the values

ei
2π
m

k, where k = 0, 1, . . . ,m − 1. In order to study the breaking of this symmetry it is

useful therefore to introduce the following operator:

Πm
m =

(

1

N2
σ

∑

~x

Πm(~x)

)m

. (3.7)

Another possible choice of lattice order parameter is [13]

Θ = cos [m× arg (Πm)] ; (3.8)

both definitions (3.7) and (3.8) have the effect to “rotate” the m different phases to the

direction corresponding to θ = 0.

There are two other quantities of physical relevance to be considered; one is the

monopole density ρ, which can be defined in the same way as in the compact theory,

using the method of ref. [14],

ρ =
1

2

〈NM 〉 + 〈NM̄ 〉

N2
σNτ

, (3.9)

where NM (NM̄ ) is the number of monopoles (antimonopoles); the other is chiral conden-

sate, 〈χ̄χ〉.

The presence of transitions is detected by looking for peaks in the susceptibility of the

operators (3.6), (3.7) and (3.8), the susceptibility of a generic operator O being defined as

χO = 〈O2〉 − 〈O〉2 . (3.10)

The susceptibilities of monopole density and chiral condensate is also considered in order

to study the possible relation of these latter operators with the confinement/deconfinement

transition.
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3.2 General strategy of the lattice calculation

The main goal of the numerical computations in this paper is to find evidences of the

existence of a transition between two phases, one with unbroken and the other with broken

Z symmetry. The strategy for that is to scan the temperature for a fixed value of the bare

fermion mass aM and on lattices with given extension to study the behavior of the lattice

order parameters defined in the previous subsection and of their susceptibility. On the

lattice, we have

T =
1

Nτa
=

g2

Nτ
β , (3.11)

therefore at fixed coupling constant g and on a lattice with fixed Nτ , the temperature can

be changed by changing β (note that the theory is super-renormalizable, therefore g does

not depend on a). We expect that changing β we meet a clear signature of the transition,

in correspondence to the critical temperature, which, at infinite fermion mass, is given in

eq. (2.12) and, through (3.11), can be translated on the lattice to the following critical

value for the β parameter:

βc(M → ∞) =
Nτ

8π
. (3.12)

The next step is to study the behavior of the Polyakov loop correlator. If the theoret-

ical expectations introduced in section 2.2 are true, then for a β value below the critical

one, βc(M), we should find a power law behavior, whereas above βc(M) there should be

exponential fall-off. In the Coulomb-confined phase, i.e. for β < βc(M), where the power

law behavior is expected, we can compare our findings with the expected tree-level value

of η given in eq. (2.16), which in lattice units reads

η =
Nτ

m24πβ
. (3.13)

We recall that 1/m represents the ratio g̃/g, i.e. the fraction charge in units of the funda-

mental charge. It should be noted here that η is proportional to 1/m2.

4. Numerical results

In this section we present our numerical results obtained on lattices 122 × 8, 322 × 8

and 642 × 8. On the smallest lattice considered, we found that tunneling effects among

the different Zm vacua of the theory in the broken symmetry phase are evident in the

expectation value of Πm. For this observable this makes possible to better unravel the

vacuum structure in the deconfined phase. However, for the study of correlation functions,

where tunneling in the deconfined phase is potentially dangerous, we used lattices with

Nσ = 32 and 64 for which we verified that tunneling is absent.

4.1 The algorithm

We used the Hybrid Monte Carlo Algorithm [15], built by superimposing the Metropolis

acceptance test to the Hybrid Algorithm in the structure proposed in ref. [16]). Here is a

list of the internal parameters of the Monte Carlo code:
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• the mass term ω for the pseudofermionic field in the Hamiltonian, which drives the

molecular dynamics;

• the integration step δt, fixed to 0.03 in all simulations;

• the frequency MCR of the algorithm refreshments and Metropolis tests.

We have verified the important role of ω in simulations: if ω is too small (ω ≪ 1), the

system thermalizes very slowly, but observables do not fluctuate much around the mean

value during the simulation time; on the contrary, if ω is not so small (ω . 1), the system

thermalizes very quickly with the disadvantage that fluctuations increase considerably. It

is therefore fundamental to optimize the choice of the parameter ω.

Additionally, we use the following abbreviations: FOM for the frequency of measure-

ments and NMS for the number of measurements or statistics. The bare fermion mass is

fixed to aM = 0.05.

4.2 Order parameter

In figure 1 we show scatter plots of the order parameter Πm in the complex plane for a

β value known a posteriori to lie in the confined phase and for several values of m. For

m = 1, 2 data distribute on a disk, while for m ≥ 3 they are on a ring whose radius

increases with m; in both cases data are uniformly spread around the origin. Figure 2

gives the evolution in the simulation time of Π10; it is interesting to observe that arg Π10

spans in a continuous way the interval [0, 2π] (with account of the 2π periodicity).

Figure 3 is the same as figure 1, but for a value of β in the deconfined phase. In

this case the Zm symmetry is broken and the values of the order parameter accumulate

in correspondence of the m roots of the identity. Accordingly, the evolution in simulation

time of arg Π10 spans the interval [0, 2π] in jerky way (see figure 4).

These scatter plots tell us that real and imaginary parts of 〈Πm〉 are zero in both

phases, if, evidently, there is enough tunneling in the deconfined phase and if the algorithm

explores the whole configuration space in the confined phase, as it seems to be the case on

the lattice 122×8 used to obtain the above figures. So, the more informative quantity here

seems to be 〈abs(Πm)〉. The behavior of this quantity is shown in figure 5 for varying β and

for several values of m and in figure 6 for varying m and for different values of β. Figure 5

shows that there is a smooth increase with β, more evident for higher values of m. Data

do not allow to clearly single out any transition; indeed, also the susceptibility of abs(Πm)

does not show clear peaks for varying β in the same region (see figure 7). Therefore, we

can conclude that this operator is not convenient to distinguish the two phases which lead

to the different behaviors shown in figures 1 and 3.

This conclusion suggests to move to the operator Πm
m, which evidently has no effect

in the angular distribution in the confined phase, i.e. in the situation of figure 1, while

“concentrates” the angular distribution along the first of the m roots of the identity in the

deconfined phase, i.e. in the situation of figure 3. Equivalently, we can say that 〈arg Πm
m〉 = 0

in the deconfined phase. The operator Πm
m should therefore permit to distinguish between

– 8 –
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Figure 1: Scatter plots of Πm (ImΠm versus ReΠm) for 8 values of m on a 122 × 8 lattice at

β = 0.15 (confined phase); the simulation parameters are aM = 0.05, ω = 0.1, δt = 0.03, MCR=50,

FOM=1000, NMS=10000. For m = 1, 2 data are homogeneously distributed on a disc; for m ≥ 3

data are homogeneously distributed on a ring whose radius increases with m.

broken and unbroken symmetry phases; since Im〈Πm
m〉 is always zero, we consider from the

beginning Re〈Πm
m〉.

Results are shown in figures 8 and 9. In this case we have a clear hint on the position

of the transition point between the two phases. In particular, figure 8 indicates that, for all

values of m > 1, there is a sharp increase of the signal at β ≃ 0.3, while figure 9 suggests

that the increase is more pronounced the higher is m. For m = 1 data show no transition at

all, as it must be, since m = 1 means integer electric charge. This is confirmed in figure 10

where a peak in the susceptibility of the operator ReΠm
m appears for all values of m > 1 at
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Figure 2: Evolution with Monte Carlo time of modulus (down) and argument (up) of Π10 on a

122 × 8 lattice at β = 0.05 (confined phase); the simulation parameters are as in figure 1.

a βc value which, on this lattice, has a mild dependence on m, namely, it decreases with

m and seems to stabilize for high m around βc = 0.32.

In figures 11 and 12 we show the same results obtained on a lattice 322 × 8. In this

case the values of β where the peaks appear are more stable with m and we can estimate

the critical value as βc = 0.33. This leads us to argue that the m-dependence of βc seen on

the smaller lattice could be a finite volume effect.

It is important to compare the numerical result for βc with the theoretical expec-

tation discussed in section 2.2, in particular with the value of βc given in eq. 3.12:

βth
c = π−1 ≃ 0.318 . . .. This value is impressively close to our numerical result, thus

supporting the theoretical scenario proposed in ref. [2] and the conjectured BKT transition

(see also ref. [17]).

In figures 13 and 14 we consider the observable 〈cos[m× arg Πm]〉, which should give

similar information as the previous observable, concerning the location of the transition

point. We see that data for m > 1 fall on top of each other, while data for m = 1 describe a

different curve, but also exhibit a sharp increase at the same point as data for m > 1. Since

we know that for m = 1 the observable cannot be an order parameter, this effect should be

an artifact of the finite volume. Unfortunately, the susceptibility, shown in figure 15, does

not have a peak structure, but shows rather a jump between two constant values, therefore

it does not allow for an accurate determination of βc.

4.3 Polyakov loop correlators

We have studied the wall-wall correlation between two Polyakov loops2

G(r) = Re〈Π(0)Π∗(r)〉 (4.1)

2Note that the value of G(r) = Im〈Π(0)Π∗(r)〉 is always compatible with zero.
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Figure 3: Scatter plots of Πm (ImΠm versus ReΠm) for 8 values of m on a 122 × 8 lattice at

β = 0.80 (deconfined phase); the simulation parameters are aM = 0.05, ω = 0.1, δt = 0.03,

MCR=50, FOM=1000, NMS=10000. In this case data are distributed on the m roots of unity.

for two values of β, β = 0.25 and β = 0.40, the first below the critical temperature and the

other above it.

It is worth noting here that the dimensionless parameter g2/M is equal to 80 for

β = 0.25 and to 50 for β = 0.40. The other important dimensionless parameter T/M is

equal to 2.5 in all simulations performed in this work. These values for g2/M and T/M

are far from the large M limit, where the theoretical analysis of refs. [2, 3] was carried on

(see Subsection 2.2). However, the authors of ref. [3] state that they expect their results

are stable toward lower electron masses.

For β = 0.40 we have simulated the system on two different lattices: 322 × 8 with
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Figure 4: Evolution with Monte Carlo time of modulus (down) and argument (up) of Π10 on a

122 × 8 lattice at β = 0.80 (deconfined phase); the simulation parameters are as in figure 3.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
β

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

<a
bs

[Π
m

]>

m=1
m=2
m=3
m=4
m=5
m=6
m=7
m=8
m=9
m=10

Figure 5: Modulus of 〈Πm〉 for 10 values of m versus β on a 122 × 8 lattice; the solid line is to

guide the eye; the simulation parameters are aM = 0.05, ω = 0.1, δt = 0.03, MCR=50, FOM=1000,

NMS=10000.

ω = 0.2, MCR=10, FOM=10, NMS=100000; 642 × 8 with ω = 0.1, MCR=50, FOM=250,

NMS=8000. Data for the correlator, shown in figure 16 (see also figure 17 for the scatter

plot of Πm) have been fitted, in a range [rmin, rmax], using the law

G(r) = A
(

e−Mr + e−M(Nσ−r)
)

+ C ; (4.2)

for both lattices and for the different values of m we have obtained χ2/d.o.f. < 1. We
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Figure 6: Modulus of 〈Πm〉 for various values of β versus m on a 122 × 8 lattice; the solid line is

to guide the eye; the simulation parameters are as in figure 5.
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Figure 7: Susceptibility of abs[Πm] for 10 values of m versus β on a 122 × 8 lattice; the solid line

is to guide the eye; the simulation parameters are as in figure 5.

have done “sliding window” fits, that is we have varied the value of rmin and rmax until

obtaining stable values for the fit parameters.

The most important result is that aM depends neither on the value of m, and so

on the fractional charge, nor on the lattice size: aM = 0.20 ± 0.05. It is instructive to

determine the “correlation length” related to this mass: ξ/a ≡ 1/(aM) = 5.00± 1.25; this

value, much smaller than the lattice size ξ/a ≪ Nσ, justifies a posteriori the fit with an

exponential function. We can conclude that this value has a physical meaning: it is the
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Figure 8: Real part of 〈Πm
m
〉 for 10 values of m versus β on a 122 × 8 lattice; the solid line is to

guide the eye; the simulation parameters are aM = 0.05, ω = 0.1, δt = 0.03, MCR=50, FOM=1000,

NMS=10000.
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Figure 9: Real part of 〈Πm
m
〉 for various values of β versus m on a 122 × 8 lattice; the solid line is

to guide the eye; the simulation parameters are as in figure 8.

Debye mass characterizing the phase above the critical temperature.

Also for β = 0.25 we have studied the system on two lattices: 322 × 8 with ω = 0.1,

MCR=50, FOM=1000, NMS=10000, and 642 × 8 with ω = 0.1, MCR=50, FOM=250,

NMS=10000.

As discussed in section 2.2, we expect that here the best fit to the correlator should be

given by a power law (see eq. (2.14)); in any case, to be conservative, we consider both the

exponential and the power law. Therefore we should interpolate data shown in figure 18
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Figure 10: Susceptibility of Re[Πm
m] for 10 values of m versus β on a 122 × 8 lattice; the solid line

is to guide the eye; the simulation parameters are as in figure 8.
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Figure 11: Real part of 〈Πm
m〉 for 8 values of m versus β on a 322 × 8 lattice; the solid line is to

guide the eye; the simulation parameters are aM = 0.05, ω = 0.2, δt = 0.03, MCR=10, FOM=10,

NMS=100000.

with the following two functions:

G(r) = A
(

e−Mr + e−M(Nσ−r)
)

+ C , (4.3)

G(r) = A
(

r−η + (Nσ − r)−η
)

+C . (4.4)

Here the constant C should zero, since the Z symmetry is unbroken, however, we included

it to take into account the possibility that, due to not enough large statistics, the whole
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Figure 12: Susceptibility of Re[Πm
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] for 8 values of m versus β on a 322 × 8 lattice; the solid line

is to guide the eye; the simulation parameters are as in figure 11.
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Figure 13: 〈cos[m × arg Πm]〉 for 10 values of m versus β on a 122 × 8 lattice; the simulation

parameters are aM = 0.05, ω = 0.1, δt = 0.03, MCR=50, FOM=1000, NMS=10000.

configuration space is not explored by the simulation algorithm, this leading to 〈Πm〉 6= 0

(see figure 19). We note, however, that the large distance correlator does not go to zero

(see figure 18); this happens because of the small values of M and η. In this case, if we try

to fit data using directly eqs. (4.3) or (4.4), we find that the value of C is not equal to the

expected value, i.e. abs(〈Πm〉)2. Therefore, we first determine the connected correlator, by

subtraction of the numerical value of abs(〈Πm〉)2, and then fit data using eqs. (4.3) or (4.4)
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Figure 14: 〈cos[m× arg Πm]〉 for various values of β versus m on a 122 × 8 lattice; the solid line

is to guide the eye; the simulation parameters are as in figure 13.
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Figure 15: Susceptibility of cos[m× arg Πm] for 10 values of m versus β on a 122 × 8 lattice; the

simulation parameters are as in figure 13.

without the additive constant C:

G(r) = A
(

e−Mr + e−M(Nσ−r)
)

, (4.5)

G(r) = A
(

r−η + (Nσ − r)−η
)

. (4.6)

In figure 20 we show the value of η obtained on the lattice with Nσ = 64 by a fit with

eq. (4.6) for different values of m. Simulations on the lattice with Nσ = 32 do not permit

to obtain reliable estimates, since results are not stable.
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Figure 16: G(r) versus r on a 642 × 8 lattice at β = 0.40 (deconfined phase); the simulation

parameters are m = 10, aM = 0.05, ω = 0.1, δt = 0.03, MCR=50, FOM=250, NMS=8000.

Figure 17: Scatter plots of Πm for 10 values of m on on a 642 × 8 lattice at β = 0.40 (deconfined

phase); the simulation parameters are aM = 0.05, ω = 0.1, δt = 0.03, MCR=50, FOM=250,

NMS=8000.

It is interesting to note that the behavior of η is the one predicted by eq. (3.13), except

for an additive constant, since we find η = A/m2 + B (see figure 21); for the lattice with

Nσ = 64, we find A = 1.59(64) and B = 0.270(27), with χ2/d.o.f. ∼ 0.01. Note that the

tree level theoretical value is η = Nτ/(m
24πβ) = 2.5464 . . . /m2.

If we try to fit data with eq. (4.5), for both lattices the result is a value of aM that

depends weakly from m and it is of the order 1/Nσ ; this is a strong evidence that the

system is in a critical region with a “correlation length” ξ/a ∝ Nσ, that is for 0 < T < Tc

the system is always critical. This is a typical feature of the BKT transition.

– 18 –



J
H
E
P
1
1
(
2
0
0
8
)
0
5
5

0 10 20 30 40 50 60
r

0.835

0.840

0.845

0.850

0.855

0.860

G
(r

)

Figure 18: G(r) versus r on a 642 × 8 lattice at β = 0.25 (confined phase); the simulation

parameters are m = 10, aM = 0.05, ω = 0.1, δt = 0.03, MCR=50, FOM=250, NMS=10000.

Figure 19: Scatter plots of Πm for 10 values of m on on a 642 × 8 lattice at β = 0.25 (confined

phase); the simulation parameters are aM = 0.05, ω = 0.1, δt = 0.03, MCR=50, FOM=250,

NMS=10000.

The error bars on aM and η are not those resulting from the fit, which would be

underestimated owing to the correlation among the values of G(r) at different r’s. They

are estimated, instead, through the behavior of the effective η and aM, built from suitable

ratios of G(r) in such a way that the dependence on the parameters A and B disappears.

This method allowed also to cross-check the results of the fit.

4.4 Chiral condensate

The results on the chiral condensate are presented in figures 22 and 23. Data show a smooth
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Figure 20: η versus m on a 642×8 lattice at β = 0.25 (confined phase); the simulation parameters

are as in figure 18.
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Figure 21: η versus 1/m2 on a 642 × 8 lattice at β = 0.25 (confined phase); the simulation

parameters are as in figure 18.

transition for increasing β, which supports the argument that there is a chiral transition

coinciding with the confinement-deconfinement one. Results in favor of this conclusion can

be found also in refs. [18, 19].

One would expect, however, that the presence of a transition should be accompanied

by a peak in the susceptibility. This seems to be not the case in our analysis — see figure 23.

A possible reason for this unexpected result could be the small volume used.
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Figure 22: Chiral condensate versus β on a 122 × 8 lattice; the simulation parameters are aM =

0.05, ω = 0.1, δt = 0.03, MCR=50, FOM=1000, NMS=10000.
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Figure 23: Chiral susceptibility versus β on a 122 × 8 lattice; the simulation parameters are as in

figure 22.

4.5 Monopole density

The behavior of the monopole density and of its susceptibility with β is shown in figures 24

and 25, respectively. The result is somewhat surprising: the monopole density decreases

very rapidly in the same region where the Polyakov loop operators show a fast change, but

the peak in the susceptibility is located at a different value of the coupling constant, i.e.

at βρ ≃ 0.18.
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Figure 24: Monopole density versus β on a 122 × 8 lattice; the simulation parameters are aM =

0.05, ω = 0.1, δt = 0.03, MCR=50, FOM=1000, NMS=10000.
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Figure 25: Monopole density susceptibility versus β on a 122×8 lattice; the simulation parameters

are as in figure 24.

5. Conclusions and outlook

In this paper we have presented an extended numerical analysis on the confinement-

deconfinement transition in non-compact QED3 with massive fermions at

finite temperature.

We have studied the system for a given value of the fermion mass on lattices with

different extensions. We have found compelling evidence that there is indeed a transition

– 22 –



J
H
E
P
1
1
(
2
0
0
8
)
0
5
5

temperature from a high-temperature phase where fractional charges are deconfined or

Debye-screened and a low-temperature phase with Coulomb-confinement. To detect the

transition point we have adopted some suitable lattice operators, sensitive to the breaking

of the underlying symmetry of the system, the Z symmetry. The wall-wall correlation of

these operators has permitted to characterize the two phases: the confined one exhibits

power law fall-off with the distance, whereas the deconfined one shows exponential decay.

There are several indications that the transition and the phase structure are compatible

with the suggestions of refs. [2, 3]:

• the critical temperature found by numerical simulations is in remarkable agreement

with the one estimated for large fermion mass in ref. [2] and, in its turn, consistent

with the BKT scenario, Tc = g2/(8π); this agreement may be either an indication of

smooth mass dependence of the effective action used in ref. [2] or an accidental fact;

in both cases, a systematic study of the dependence of our results on the fermionic

mass should be performed; this is, however, beyond the scope of the present work;

• two phases are clearly seen, one where the correlator of the order parameter exhibits a

fall-off with the distance with a power law, the other where the fall-off is exponential;

the fact that the power law is valid well inside the confined phase and not only on

the critical point is an indication in favor of the BKT scenario;

• the scaling of the index η for the power law fall-off with the fractional electric charge

is in agreement with the prediction from ref. [3] (except for an additive constant),

which supports the BKT scenario.

There is an indication that the chiral transition has a relation with the deconfinement

transition, which should, however, be confirmed by an analysis on larger lattices.

If one defines monopoles on the lattice in the non-compact theory as in the compact

theory, one can see that their density across the deconfinement transition shows a sharp

change. Surprisingly enough, the susceptibility of the monopole density shows a peak at a

smaller temperature than the deconfinement one.

The future development of this work includes a finite-size scaling analysis near the

transition temperature, in order to achieve an accurate enough determination of the critical

indices and to conclude that the transition is definitely BKT. Moreover, simulations for

different values of the fermion mass could allow to explore the phase diagram of the theory

in the space of the mass, temperature and coupling parameters and to get a unifying view

of the statistical properties of the system.
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